25 research outputs found

    Differentiation and dynamics of competitiveness impacts from the EU ETS

    Get PDF
    We summarises the main factors that differentiate impacts of the EU ETS on profitability and market share. By examining sampling a range of sectors, we present some simple metrics and indicators to help judge the nature of potential impacts. We also consider briefly the mitigation response to these impacts by sectors, and how they may evolve over time. The broad conclusion confirms the aggregate findings presented in the existing literature - most participating sectors are likely to profit under the current ETS structure out to 2012 at the cost of a modest loss of market share, but this may not hold for individual companies and regions. The period 2008-12 can assist participating sectors to build experience and financial reserves for longer term technology investments and diversification, providing the continuation and basic principles of the EU ETS post-2012 is quickly defined and incentives are in place for sectors to pursue this.Emissions trading, industrial competitiveness, spillovers, allowance allocation, perverse incentives.

    Regaining momentum for international climate policy beyond Copenhagen

    Get PDF
    The 'Copenhagen Accord' fails to deliver the political framework for a fair, ambitious and legally-binding international climate agreement beyond 2012. The current climate policy regime dynamics are insufficient to reflect the realities of topical complexity, actor coalitions, as well as financial, legal and institutional challenges in the light of extreme time constraints to avoid 'dangerous' climate change of more than 2°C. In this paper we analyze these stumbling blocks for international climate policy and discuss alternatives in order to regain momentum for future negotiations

    Modeling denitrification in aquatic sediments

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 159-178, doi:10.1007/s10533-008-9270-z.Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.Financial support for AEG to work on the manuscript came from NSF NSF-DEB-0423565. KF, DB and DDT acknowledge support from NOAA CHRP grant NA07NOS4780191

    Climate Policy in Russia

    No full text

    Application of catchment scale sediment delivery model INCA-Sed to four small study catchments in Finland

    No full text
    The novel catchment scale erosion and sediment delivery model INCA-Sed was applied to four small study catchments in Finland. Three of these, the Mustajoki, Haarajoki and Luhdanjoki, are headwater catchments located in central Finland. The associated rivers have differing morphological characteristics varying from a ditch to a small river. Soil textures in the area are derived from moraine deposits and are largely sand and gravel. The Mustajoki and Haarajoki catchments are forested and only 10% of the area is under cultivation. In the Luhdanjoki catchment agricultural fields cover 40% of the area. The fourth study site, the Savijoki catchment, represents an intensively cultivated area in south-western Finland. Cultivated fields cover 40% of the catchment area, and they are located on clay soils along the river. The INCA-Sed model was able to capture both the correct magnitude and seasonal behaviour of suspended sediment concentrations in the rivers, as well as the correct magnitude of the sediment load derived from different land use classes. Small differences in river morphology and soil textures between the catchments have a significant influence on suspended sediment concentration in the rivers. Correct timing of suspended sediment concentration peaks is not, however, captured by the INCA-Sed model, which may be due to the stochastic nature of erosion and delivery processes at the catchment scale which are not taken into account in the parameter values used in the modelling. Parameter values were estimated from previous researches based on average process loads. The INCA-Sed model was, however, generally found to be a suitable tool for evaluating effects of land use change on erosion and sediment delivery in Finland as it correctly reproduces spatial and seasonal variations in sediment delivery, in addition to annual averages with spatial and temporal variations
    corecore